NUMBER OF COMPATIBLE PAIR OF ACTIONS FOR FINITE CYCLIC GROUPS OF P-POWER ORDER
نویسندگان
چکیده
منابع مشابه
Finite $p$-groups and centralizers of non-cyclic abelian subgroups
A $p$-group $G$ is called a $mathcal{CAC}$-$p$-group if $C_G(H)/H$ is cyclic for every non-cyclic abelian subgroup $H$ in $G$ with $Hnleq Z(G)$. In this paper, we give a complete classification of finite $mathcal{CAC}$-$p$-groups.
متن کاملapplication of upfc based on svpwm for power quality improvement
در سالهای اخیر،اختلالات کیفیت توان مهمترین موضوع می باشد که محققان زیادی را برای پیدا کردن راه حلی برای حل آن علاقه مند ساخته است.امروزه کیفیت توان در سیستم قدرت برای مراکز صنعتی،تجاری وکاربردهای بیمارستانی مسئله مهمی می باشد.مشکل ولتاژمثل شرایط افت ولتاژواضافه جریان ناشی از اتصال کوتاه مدار یا وقوع خطا در سیستم بیشتر مورد توجه می باشد. برای مطالعه افت ولتاژ واضافه جریان،محققان زیادی کار کرده ...
15 صفحه اولFinite groups with $X$-quasipermutable subgroups of prime power order
Let $H$, $L$ and $X$ be subgroups of a finite group$G$. Then $H$ is said to be $X$-permutable with $L$ if for some$xin X$ we have $AL^{x}=L^{x}A$. We say that $H$ is emph{$X$-quasipermutable } (emph{$X_{S}$-quasipermutable}, respectively) in $G$ provided $G$ has a subgroup$B$ such that $G=N_{G}(H)B$ and $H$ $X$-permutes with $B$ and with all subgroups (with all Sylowsubgroups, respectively) $...
متن کاملon the order of the schur multiplier of a pair of finite $p$-groups ii
let $g$ be a finite $p$-group and $n$ be a normal subgroup of $g$ with $|n|=p^n$ and $|g/n|=p^m$. a result of ellis (1998) shows that the order of the schur multiplier of such a pair $(g,n)$ of finite $p$-groups is bounded by $ p^{frac{1}{2}n(2m+n-1)}$ and hence it is equal to $ p^{frac{1}{2}n(2m+n-1)-t}$ for some non-negative integer $t$. recently, the authors have characterized...
متن کاملon the order of the schur multiplier of a pair of finite p-groups ii
let $g$ be a finite $p$-group and $n$ be a normal subgroup of $g$ with $|n|=p^n$ and $|g/n|=p^m$. a result of ellis (1998) shows that the order of the schur multiplier of such a pair $(g,n)$ of finite $p$-groups is bounded by $ p^{frac{1}{2}n(2m+n-1)}$ and hence it is equal to $ p^{frac{1}{2}n(2m+n-1)-t}$ for some non-negative integer $t$. recently, the authors have characterized...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Jurnal Teknologi
سال: 2018
ISSN: 2180-3722,0127-9696
DOI: 10.11113/jt.v80.11317